Меню Рубрики

Обмен газов между альвеолярным воздухом и кровью у животных

Альвеолярный воздух и кровь легочных капилляров разделяет так называемая альвеолярно-капиллярная мембрана, толщина которой варьирует от 0.3 до 2.0 мкм. Основу альвеолярно-капиллярной мембраны составляет альвеолярный эпителий и капиллярный эндотелий, каждый из которых расположен на собственной базальной мембране и образует непрерывную выстилку, соответственно, альвеолярной и внутрисосудистой поверхности. Между эпителиальной и эндотелиальной базальными мембранами находится интерстиций. Рис.1.

В отдельных участках базальные мембраны практически прилегают друг к другу.

Обмен респираторных газов осуществляется через совокупность субмикроскопических структур, содержащих гемоглобин эритроцитов, плазму крови, капиллярный эндотелий и его две плазматические мембраны, сложный по составу соединительно-тканный слой, альвеолярный эпителий с двумя плазматическими мембранами, наконец, внутреннюю выстилку альвеол – сурфактант. За счет сурфактанта удлиняется расстояние для диффузии газов, что приводит к небольшому снижению концентрационного градиента на альвеолярно-капиллярной мембране.

Переход газов через альвеолокапиллярную мембрану происходит ПО ЗАКОНАМ ДИФФУЗИИ. Но при растворении газов в жидкости процесс диффузии резко замедляется. Углекислый газ, например, диффундирует в жидкости примерно в 13000 раз, а кислород — в 300000 раз медленнее, чем в газовой среде.

Количество газа, проходящее через легочную мембрану в единицу времени, т.е. скорость диффузии, прямо пропорциональна разнице его парциального давления по обе стороны мембраны и обратно пропорциональна сопротивлению диффузии.

n толщиной мембраны величиной поверхности газообмена,

n коэффициентом диффузии газа, зависящим от его молекулярного веса и температуры,

n коэффициентом растворенности газа в биологических жидкостях мембраны

Направление и интенсивность перехода кислорода из альвеолярного воздуха в кровь легочных микрососудов, а углекислого газа — в обратном направлении определяет разница между парциальным давлением газа в альвеолярном воздухе и его напряжением (парциальным давлением растворенного газа) в крови. Для кислорода градиент давления составляет около 60 мм.рт.ст. (парциальное давление в альвеолах — 100 мм.рт.ст., а напряжение в крови, поступающей в легкие, — 40 мм.рт.ст.), а для углекислого газа — примерно 6 мм.рт.ст.(парциальное давление в альвеолах — 40 мм.рт.ст., напряжение в притекающей к легким крови — 46 мм.рт.ст.).

Биофизической характеристикой проницаемости аэрогематического барьера легких для респираторных газов является так называемая диффузионная способность легких. ЭТО КОЛИЧЕСТВО МЛ ГАЗА, ПРОХОДЯЩЕЕ ЧЕРЕЗ ЛЕГОЧНУЮ МЕМБРАНУ В 1 МИНУТУ ПРИ РАЗНИЦЕ ПАРЦИАЛЬНОГО ДАВЛЕНИЯ ГАЗА ПО ОБЕ СТОРОНЫ МЕМБРАНЫ В 1 мм рт. ст.

Величина диффузионной способности легких зависит от их объема и соответствующей ему площади поверхности газообмена.

Величина диффузионной способности легких при задержке дыхания на глубоком вдохе оказывается большей, чем в устойчивом состоянии на уровне функциональной остаточной емкости. За счет гравитационного перераспределения кровотока и объема крови в легочных капиллярах диффузионная способность легких в положении лежа больше, чем в положении сидя, а сидя — больше, чем в положении стоя. С возрастом диффузионная способность легких снижается.

Дата добавления: 2014-12-12 ; просмотров: 1158 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

По материалам helpiks.org

ГАЗООБМЕН МЕЖДУ АЛЬВЕОЛАМИ И КРОВЬЮ

Газообмен осуществляется с помощью диф­фузии: СО2 выделяется из крови в альвеолы, О2 поступает из альвеол в венозную кровь, пришедшую в легочные капилляры из всех органов и тканей организма. При этом ве­нозная кровь, богатая СО2 и бедная О2, превращается в артериальную, насыщенную О2 и обедненную СО2. Газообмен между аль­веолами и кровью идет непрерывно, но во время систолы больше, чем во время диас­толы.

А. Движущая сила, обеспечивающая газо­обмен в альвеолах, — разность парциальных давлений РО2 и РСО2 в альвеолярной смеси газов и напряжений этих газов в крови. Пар­циальное давление газа — часть общего дав­ления газовой смеси, приходящаяся на долю данного газа. Напряжение газа в жидкости зависит только от парциального давления газа над жидкостью, и они равны между собой. Парциальное давление газа в смеси, согласно закону Дальтона, прямо пропорци­онально его объемному содержанию. Для его расчета необходимо от общего давления газо­вой смеси вычислить процент, равный содер­жанию этого газа в смеси. При этом необхо­димо учесть парциальное давление водяных паров. Так, например, парциальное давление водяных паров в газовой смеси в альвеолах при температуре тела 37 °С составляет 47 мм рт.ст., на долю давления газовой смеси при­ходится 760—47 = 713 мм рт.ст. Поскольку процентное содержание кислорода в альвео­лярной смеси равно 14 %, то

Углекислый газ диффундирует в альвеолы в 20—25 раз быстрее, чем кислород, вследст­вие его лучшей растворимости в жидкости и мембранах. Именно поэтому обмен СО2 в легких происходит достаточно полно, не­смотря на небольшой градиент парциально­го давления этого газа и его напряжения — всего 6 мм рт.ст. (для кислорода — до 60 мм рт.ст.). В условиях покоя РСО2 в артери­альной крови может колебаться в пределах 35—45 мм рт.ст. Кроме градиента парциаль­ного давления-напряжения, обеспечиваю­щего газообмен в легких, имеется и ряд дру­гих, вспомогательных факторов, играющих важную роль в газообмене (табл. 12.1).

Б. Факторы, способствующие диффузии газов в легких.

1. Огромная поверхность контакта легоч­ных капилляров и альвеол (60—120 м 2 ). Аль­веолы представляют собой пузырьки диамет­ром 0,3—0,4 мм, образованные эпителиоци-тами, причем каждый капилляр контактирует с 5—7 альвеолами.

2. Большая скорость диффузии газов через тонкую легочную мембрану — около 1 мкм. Выравнивание РО2 в альвеолах и крови в легких происходит за 0,25 с; кровь находит­ся в капиллярах легких около 0,5 с, т.е. в 2 раза больше. Скорость диффузии СО2 в 23 раза больше таковой О2, т.е. имеется вы­сокая степень надежности в процессах газо­обмена в организме. Большая диффузионная поверхность и большая скорость диффузии газов определяют хорошую диффузионную способность легких (количество миллилит­ров газа, проходящего через суммарную по­верхность легочной мембраны всех вентили­руемых альвеол обоих легких за 1 мин при градиенте парциального давления газа 1 мм рт. ст.). Диффузионная способность легких в покое для кислорода составляет около 25 мл-мин

‘-мм рт.ст.» 1 , для углекислого га­за — около 600 мл-мин

‘-мм рт.ст.» 1 . Естест­венно, чем больше поверхность газообмена, тем больше диффузионная их способность, поскольку это суммарный показатель.

3. Интенсивные вентиляция легких и кро­вообращение активация вентиляции лег­ких и кровообращения в них, естественно, способствует диффузии газов в легких. Ин­тенсивность вентиляции различных отделов легких зависит от положения тела: в верти­кальном положении лучше вентилируются нижние отделы, в горизонтальном — отделы легких, находящиеся снизу (в положении на спине — дорсальные, на животе — вентраль­ные, на боку — тоже нижней части легких). Это объясняется тем, что отделы легких, на­ходящиеся снизу, сжаты под действием соб­ственной массы тела, так как они не имеют жесткого каркаса, а отделы легких, находя-

щиеся сверху, растянуты. Поэтому при вдохе нижние отделы легких имеют боль­шую возможность расправляться. Примерно так же изменяется и кровообращение в лег­ких.

В вертикальном положении величина ле­гочного кровотока на единицу объема ткани почти линейно возрастает в направлении сверху вниз. Меньше всего кровоснабжаются верхушки легких. В положении вниз головой кровоснабжение верхушек легких улучшается и может быть больше, чем в нижних его отде­лах. В положении сидя верхушки легких снабжаются меньше на 15 %, в положении стоя — меньше на 25 %. Это весьма важный факт, который необходимо учитывать при сердечно-легочной недостаточности: перфу­зия легких максимальна в положении лежа — рекомендация больному лечь в постель край­не важна в этой ситуации. В положении лежа на спине кровоснабжение легких в продоль­ном направлении практически везде одина­ково. При умеренной физической нагрузке различия в кровоснабжении разных отделов легких уменьшаются. Различия интенсивнос­ти кровообращения в разных отделах легких объясняются разной степенью сдавливания или расширения артериальных сосудов лег­ких, содержащих мало гладкомышечных эле­ментов, что является следствием низкого давления крови в них; давление в капиллярах легких равно 6—7 мм рт.ст.

По интенсивности кровообращения лег­кие делят на три зоны: верхушки легких, среднюю и нижнюю (зоны Веста —1,2, 3). Они мобильны и зависят не только от поло­жения тела, но и от интенсивности дыхания. Так, после спокойного выдоха зона 2 зани­мает примерно 2 /5 легкого, а после макси­мального выдоха все легкое примерно соот­ветствует зоне 3, так как оно растянуто меньше. В результате этого улучшается кро­вообращение в средних и верхних отделах легких и несколько ухудшается в нижних от­делах вследствие дополнительного сжатия нижних отделов легких и сужения их сосу­дов (нижние отделы легких всегда меньше расправлены). Поскольку кровоток в верх­них отделах легких мал, то объем их венти­ляции, хотя и снижен, но больше объема кровотока; в средних отделах объем венти­ляции несколько меньше объема кровотока: отношение объема вентиляции к объему перфузии в них составляет 0,8; в нижних от­делах данное соотношение несколько мень­ше и составляет 0,7.

4. Корреляция между кровотоком в дан­ном участке легкого и его вентиляцией. Если

участок легкого плохо вентилируется, то кровеносные сосуды в этой области сужают­ся и даже полностью закрываются. Это осу­ществляется с помощью механизмов мест­ной саморегуляции — посредством реакций гладкой мускулатуры: при снижении в аль­веолах РО2 возникает вазоконстрикция. В эксперименте она наблюдается уже при небольшом снижении содержания кислоро­да (до 15—16 %) в газовой смеси, которой вентилируют легкое. Вентиляция легкого азотом также ведет к закрытию капилляров, вентиляция кислородом ведет к раскрытию капилляров легких. Эта реакция сохраняется даже на изолированном легком. При по­вышении СО2 также возникает вазокон­стрикция, а при снижении РСО2 сужаются бронхи. Последнее ведет к сохранению угольной кислоты при гипокапнии. Реакция усиливается при повышении рН крови. Сле­дует заметить, что, хотя и существует меха­низм, обеспечивающий корреляцию крово­обращения и вентиляции соответствующих участков легких, он нарушается в результате механического сдавления сосудов: при вы­дохе, когда давление в альвеолах повышает­ся, кровоток может сильно уменьшиться. Нередко отмечают, что при выдохе кровоток в сосудах легких может прекратиться вслед­ствие повышения давления воздуха в альве­олах на 1—2 мм рт.ст. Однако это мнение необоснованно, так как давление в капилля­рах легких составляет 6—7 мм рт.ст., т.е. в несколько раз больше давления воздуха в альвеолах на выдохе.

Из-за того что верхушки легких перерас­тянуты и по этой причине хуже вентили­руются, они чаще поражаются туберкулезом. В нормальных условиях у здорового челове­ка активно функционирует примерно V7 аль­веол, эти активно функционирующие участ­ки легких непрерывно меняются. Тот факт, что одновременно функционирует лишь часть альвеол, весьма важен. В случае пора­жения части легкого или даже всего легкого и невозможности излечения терапевтичес­кими средствами можно одно легкое удалить полностью. Оставшееся легкое обеспечит га­зообмен, достаточный для удовлетворитель­ной жизнедеятельности организма.

В. Газообмен в легком, естественно, ве­дет к изменению газового состава в легком по сравнению с составом атмосферного воз­духа. В покое человек потребляет около 250 мл О2 и выделяет около 230 мл СО2. Поэтому в альвеолярном воздухе уменьшает­ся количество О2 и увеличивается — СО2 (табл. 12.2).

Изменения содержания О2 и СО2 в альвео­лярной смеси газов являются следствием по­требления организмом О2 и выделения СО2. В выдыхаемом воздухе количество О2 не­сколько возрастает, а СО2 уменьшается по сравнению с альвеолярной газовой смесью вследствие того, что к ней добавляется воздух воздухоносного пути, не участвующий в газо­обмене и, естественно, содержащий СО2 и О2 в таких же количествах, как и атмосферный воздух. Азот в газообмене не участвует, неко­торое увеличение содержания его в альвео­лярном воздухе является относительным: объем выдыхаемого воздуха несколько мень­ше объема вдыхаемого. Это объясняется тем, что СО2 выделяется из организма несколько меньше, нежели потребляется О2, из-за раз­личного содержания углерода и кислорода в различных окисляемых веществах организма. На долю инертных газов в атмосферном воз­духе приходится около 1 %. Кровь, обога­щенная О2 и отдавшая СО2, из легких посту­пает в сердце и с помощью артерий и капил­ляров распределяется по всему организму, в различных органах и тканях отдает О2 и полу­чает СО2.

По материалам studfiles.net

Воздухом в физическом смысле этого термина обозначается природная газовая смесь определенного состава. Уже в дыхательных путях во время вдоха соотношение газов в воздухе меняется, еще в большей степени изменения затрагивают газовую смесь в альвеолах. Поэтому термины «альвеолярный» и «выдыхаемый воздух» в физическом смысле не совсем правомочны, однако в физиологической литературе применяются. Из альвеолярного воздуха в кровь диффундирует кислород, а из крови — углекислый газ. Обогащенная кислородом кровь поступает к тканям, где парциальное давление кислорода ниже, а углекислого газа выше, в результате кислород диффундирует в тканевую жидкость, а углекислый газ — в кровь.

Состав вдыхаемого и выдыхаемого воздуха.

Газообмен в лёгких и тканях осуществляется путём диффузии газов и подчиняется закону Фика:

М — количество диффундирующего газа;

DР — начальный градиент парциального давления газа в альвеолярном воздухе и его напряжения в крови;

Х/Ska — сопротивление диффузии;

Х – расстояние диффузии газов;

S — суммарная площадь контакта между альвеолами и капиллярами лёгких — площадь диффузии;

k — коэффициент диффузии газа, измеряемый количеством газа, проходящего путь в 1 см через поверхность в 1 м 2 при определённой температуре;

a — коэффициент растворимости газа, выражающийся бъёмом газа, который может растворяться в 1 мл жидкости при температуре 0 о С и давлении данного газа над жидкостью в 760 мм рт. ст.

Из формулы Фика следует, что скорость диффузии газа (в легких) прямо пропорциональна разности парциального давления газа в альвеолярном воздухе и его напряжения в крови альвеолярных капилляров. Парциальное давление газа — это давление, приходящееся на долю данного газа в смеси газов и пропорциональное его процентному содержанию в газовой смеси.

Если на границе между соприкасающимися газом и жидкостью создаётся градиент давления газа, то часть газа переходит в область более низкого парциального давления или напряжения до уравновешивания давлений.

Так как РО2 венозной крови (40 мм рт.ст.) ниже РО2 альвеолярного воздуха (102 мм рт.ст.) на 62 мм рт.ст, то этот градиент обеспечивает диффузию кислорода из альвеолярного воздуха в капилляры.

РСО2 венозной крови (46 мм рт.ст.) выше РСО2 альвеолярного воздуха на 6 мм рт.ст., что обеспечивает диффузию СО2 из венозной крови в альвеолы.

В каждой альвеоле градиент парциального давления характеризуется своим вентиляционно-перфузионным отношением (ВПО). Нормальное соотношение между альвеолярной вентиляцией и лёгочным кровотоком составляет 4/5 = 0,8, т.е. в минуту в альвеолы поступает 4 л воздуха и через сосудистое русло легких протекает за это время 5 л крови (на верхушке легкого соотношение в целом больше, чем на основании легких). Такое соотношение вентиляции и перфузии обеспечивает потребление кислорода достаточное для метаболизма за время нахождения крови в капиллярах легкого. Величина легочного кровотока в покое составляет 5-6 л/мин, движущей силой является разница давления около 8 мм рт.ст. между легочной артерией и левым предсердием. При физической работе легочной кровоток увеличивается в 4 раза, а давление в легочной артерии в 2 раза. Это уменьшение сосудистого сопротивления происходит пассивно в результате расширения легочных сосудов и раскрытия резервных капилляров. В покое кровь протекает примерно только через 50% всех легочных капилляров. По мере возрастания нагрузки доля перфузируемых капилляров возрастает, параллельно увеличивается и площадь газообменной поверхности. Легочный кровоток отличается региональной неравномерностью, которая зависит, в основном, от положения тела. При вертикальном положении тела лучше снабжаются кровью основания легких. Основными факторами, от которых зависит насыщение крови в легких кислородом и удаление из нее углекислого газа, являются альвеолярная вентиляция, перфузия легких и диффузионная способность легких.

По материалам lektsii.org

Альвеолы окружены сетью капилляров. Стенки альвеол и капилляров очень тонки и проницаемы для газов. Концентрация кислорода в альвеолярном воздухе значительно выше, чем в венозной крови, движущейся по капиллярам. Поэтому кислород, вследствие разности парциального давления (100мм рт.ст.— 40 мм рт. ст. = 60 мм рт. ст.) по закону диффузии легко переходит из альвеол в кровь, обогащая ее. Кровь становится артериальной. Концентрация диоксида углерода гораздо выше в венозной крови, чем в альвеолярном воздухе. Поэтому диоксид углерода вследствие разности парциального давления (46 мм рт.ст. — 40 мм рт. ст. = 6 мм рт. ст.), по закону диффузии переходит из крови в альвеолы.

(Парциа́льное давление (лат. partialis — частичный, от лат. pars — часть) — давление, которое имел бы газ, входящий в состав газовой смеси, если бы он один занимал объём, равный объёму смеси при той же температуре.)

ТРАНСПОРТ ГАЗОВ КРОВЬЮ

Кислород, проникнув в кроток, соединяется с гемоглобином эритроцитов и в виде оксигемоглобина транспортируется артериальной кровью к тканям. В артериальной крови кислорода содержится 16—19 объемных %, а диоксида углерода 52—57об. % Диоксид углерода выходит из тканей и часть его образует химическое соединение с гемоглобином — карбогемоглобин (4,5 об. %), другая часть образует соединение в виде солей угольной кислоты: NaHCO3, KHCO3 (51 об. %) и около 2,5 об. % находится в состоянии физического растворения. В этих формах диоксид углерода транспортируется венозной кровью от тканей к легким. В венозной крови диоксида углерода содержится 58—63 об. %, кислорода-12 об. %.

ОБМЕН ГАЗАМИ МЕЖДУ КРОВЬЮ И ТКАНЯМИ

В тканях кислород высвобождается из непрочного соединения с гемоглобином эритроцитов и по закону диффузии легко проникает в клетки тканей, так как концентрация кислорода в артериальной крови значительно выше (парциальное давление кислорода равно 100 мм рт. ст.), чем в тканях. Здесь кислород используется для окисления органических соединений, в результате которого образуется диоксид углерода. Концентрация диоксида углерода в тканях возрастает и становится значительно выше, чем в притекающей к ним крови. Парциальное давление диоксида углерода в тканях равно 60 мм рт. ст., а в притекающей крови — 40 мм рт. ст. Поэтому, по закону диффузии диоксид углерода переходит из тканей в кровь, и она становится богатой диоксидом углерода, т. е. венозной.

178.45.31.187 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

По материалам studopedia.ru