Меню Рубрики

Почему глутаминовая кислота нормализует уровень глюкозы в крови

Глутаминовая кислота (глютаминовая кислота, глутамат) – заменимая аминокислота, в плазме крови вместе со своим амидом (глутамином) составляет около 1/3 всех свободных аминокислот.

Глутаминовая кислота входит в состав белков и ряда важных низкомолекулярных соединений. Она является составной частью фолиевой кислоты.

Название кислоты произошло от сырья, из которого она была впервые выделена – клейковина пшеницы.

Глутаминовая кислота — 2-аминопентандиовая или α-аминоглутаровая кислота.

Глутаминовая кислота (Глу, Glu, E) является одной из важнейших аминокислот растительных и животных белков, молекулярная формула — C5H9NO4.

Глутаминовая кислота впервые была выделена из эндосперма пшеницы в 1866 г. Ритгаузеном, а в 1890 г. синтезирована Вольфом.

Суточная потребность в глутаминовой кислоте выше, чем во всех других аминокислотах и составляет 16 грамм в сутки.

Глутаминовая кислота представляет собой растворимые в воде кристаллы с температурой плавления 202 0 С. Это кристаллическая масса коричневого цвета со специфическим кислым вкусом и специфическим запахом.

Глутаминовая кислота растворяется в разбавленных кислотах, щелочах и горячей воде, трудно растворяется в холодной воде и концентрированной соляной кислоте, практически не растворима в этиловом спирте, эфире и ацетоне.

Глутаминовая кислота играет важную роль в обмене веществ.

В значительном количестве эта кислота и ее амид содержатся в белках.

Глутаминовая кислота стимулирует окислительно-восстановительные процессы в головном мозге. Глутамат и аспартат содержится в мозге в высоких концентрациях.

Глутаминовая кислота нормализует обмен веществ, изменяя функциональное состояние нервной и эндокринной систем.

Стимулирует передачу возбуждения в синапсах ЦНС, связывает и выводит аммиак.

Находясь в центре азотистого обмена, глутаминовая кислота тесно связана с углеводным, энергетическим, жировым, минеральным и другими видами обмена веществ живого организма.

Участвует в синтезе других аминокислот, АТФ, мочевины, способствует переносу и поддержанию необходимой концентрации K + в мозге, повышает устойчивость организма к гипоксии, служит связующим звеном между обменом углеводов и нуклеиновых кислот, нормализует содержание показателей гликолиза в крови и тканях.

Глутаминовая кислота оказывает положительное влияние на дыхательную функцию крови, на транспорт кислорода и его использование в тканях.

Она регулирует липидный и холестериновый обмены.

Глутаминовая кислота играет важную роль не только в образовании вкусовых и ароматических свойств хлеба, но и оказывает влияние на деятельность основных представителей бродильной микрофлоры ржаных заквасок и теста – дрожжей и молочнокислых бактерий.

Свободная глутаминовая кислота содержится в различных органах и тканях в большом количестве по сравнению с другими аминокислотами.

Глутаминовая кислота участвует в пластическом обмене. Более 20% белкового азота представлено глутаминовой кислотой и ее амидом.

Она входит в состав фолиевой кислоты и глутатиона, участвует в обмене более 50% азота белковой молекулы.

При синтезе аспарагиновой кислоты, аланина, пролина, треонина, лизина и др. аминокислот используется не только азот глутамата, но и его углеродный скелет.

До 60% углерода глутаминовой кислоты может включаться в гликоген, 20-30% — в жирные кислоты.

Глутаминовая кислота и ее амид (глутамин) играют основную роль в обеспечении азотом метаболических превращений — синтеза заменимых аминокислот.

Участие глутаминовой кислоты в пластическом обмене тесно связано с ее детоксикационной функцией – она принимает на себя токсичный аммиак.

Участие глутаминовой кислоты в азотистом обмене может быть охарактеризовано как высокоактивная утилизация и обезвреживание аммиака.

Велика роль глутамата и глутамина в синтезе мочевины, так как оба ее азота могут быть поставлены этими соединениями.

Превращения глутаминовой кислоты регулируют состояние энергетического обмена митохондрий.

Глутаминовая кислота при введении ее в организм оказывает воздействие на процессы азотистого обмена. После инъекций глутамата натрия возрастает содержание аланина, глутамина, аспарагиновой кислоты в почках, мозгу, сердечной и скелетных мышцах.

Глутаминовая кислота обезвреживает аммиак, образующийся в организме в результате распада. Аммиак связывается с глутаминовой кислотой с образованием глутамина. Синтезированный в тканях глутамин поступает в кровь и переносится ее в печень, где используется для образования мочевины.

Обезвреживающее действие глутаминовой кислоты особенно выражено при повышенном содержании аммиака в крови тканях (при воздействии холода, перегреве, гипоксии, гипероксии, аммиачном отравлении).

Глутаминовая кислота способна связывать аммиак и стимулировать обмен веществ в печени, что дает возможность применять ее при печеночной недостаточности.

Глутаминовая кислота способна увеличивать синтез белка и РНК в печеночной ткани, стимулировать синтез белков и пептидов.

Глутаминовая кислота и ее амид играют существенную роль в синтезе белка:

— значительное содержание глутаминовой кислоты в белке;

— «сберегающий эффект» — предотвращение использования незаменимого азота для синтеза заменимых аминокислот;

— глутаминовая кислота легко превращается в заменимые аминокислоты, обеспечивает достаточный набор всех аминокислот, необходимых для биосинтеза белка.

Кроме анаболического действия глутаминовая кислота тесно связана с процессами метаболизма углеводов: до 60% углерода введеной глутаминовой кислоты обнаруживается в составе гликогена.

Глутаминовая кислота понижает уровень сахара в крови при гипергликемии.

Глутаминовая кислота препятствует накоплению в крови молочной и пировиноградной кислот, сохраняет на более высоком уровне содержание гликогена в печени и мышцах.

Под влиянием глутаминовой кислоты при гипоксии наблюдается нормализация содержания АТФ в клетках.

Углеродный скелет глутаминовой кислоты легко образует углеводы. Глутаминовая кислота не только сама включается в углеводные ресурсы тканей, но и значительно стимулирует окисление углеводов.

Наряду с метионином глутаминовая кислота способна предупреждать жировое перерождение печени, вызванное введением четыреххлористого углерода.

Глутаминовая кислота участвует в минеральном обмене, являясь регулятором обмена калия и связанного с ним метаболизма натрия.

Из солей глутаминовой кислоты на распределение калия и натрия в крови и в тканях наибольшее влияние оказывает глутамат натрия. Он увеличивает содержание натрия в скелетных мышцах, сердце, почках, а также калия в сердце, печени и почках при одновременном снижении его уровня в плазме.

Глутаминовая кислота, легко и быстро проникая, через тканевые барьеры с большой скоростью подвергается окислению. Она оказывает воздействие на аминокислотный, белковый, углеводный, липидный обмены, на рапределение калия и натрия в организме.

Эффект воздействия глутаминовой кислоты более выражен при измененном состоянии организма, когда наблюдается дефицит самой кислоты или связанных с ней продуктов обмена веществ.

Введение глутамата стимулирует дыхание животных, улучшает дыхательную функцию крови, увеличивает напряжение кислорода в тканях.

В условиях кислородного голодания глутамат предотвращает уменьшение содержания гликогена и богатых энергией соединений в печени, мышцах, головном мозге и сердце животных и вызывает снижение уровня недоокисленных продуктов и молочной кислоты в крови и скелетных мышцах.

Глутаминовая кислота может влиять на обмен веществ, функции органов и систем, не только включаясь в тканевые обменные процессы, но и через изменение функционального состояния нервной и эндокринной систем.

Участие нервной системы в механизме действия глутаминовой кислоты определяется особой ролью аминокислоты в обмене веществ головного мозга, так как именно в нервной ткани она наиболее широко вовлекается в разнообразные процессы.

В энергетическом обмене нервной системы глутаминовая кислота занимает центральное место, т.к. не только способна окисляться в мозге наравне с глюкозой, но также и введенная глюкоза в значительной мере превращается в глутаминовую кислоту и ее метаболиты.

Концентрация глутаминовой кислоты в мозге в 80 раз превышает ее концетрацию в крови. В функционально активных участках мозга по сравнению с другими концентрация глутаминовой кислоты в 3 раза больше.

style=»display:block»
data-ad-client=»ca-pub-1238801750949198″
data-ad-slot=»4499675460″
data-ad-format=»auto»
data-full-width-responsive=»true»>

Из всех отделов мозга наибольшее количество глутаминовой кислоты приходится на область двигательного анализатора. Так, уже через несколько минут после перорального или внутреннего введения глутаминовая кислота обнаруживается во всех отделах мозга и гипофизе.

Функцию центрального метаболита глутаминовая кислота выполняет не только в мозге, но и в переферических нервах.

Важное значение глутаминовой кислоты в деятельности нервной системы связано с ее способностью обезвреживать аммиак и образовывать глутамин.

Глутаминовая кислота способна увеличивать артериальное давление, повышать уровень сахара в крови, обеспечивать мобилизацию гликогена в печени и выводить больных из состояния гипогликемической комы.

При длительном приеме глутаминовая кислота стимулирует функции щитовидной железы, что проявляется на фоне дефицита йода и белка в питании.

Подобно нервной системе мышцы относятся к возбудимой ткани с большими нагрузками и резкими переходами от покоя к активности. Глутаминовая кислота увеличивает сократительную способность миокарда, матки. В связи с этим, глутаминовая кислота применяется как биостимулятор при слабости родовой деятельности.

Сыр пармезан, яйца, зеленый горошек, мясо (цыпленок, утка, говядина, свинина), рыба (форель, треска), томаты, свекла, морковь, лук, шпинат, кукуруза.

Глутаминовая кислота и глутамин применяются в качестве кормовых и пищевых добавок, приправ, сырья для фармацевтической и парфюмерной промышленности.

В пищевой промышленности глутаминовая кислота и ее соли находят широкое применение в качестве вкусовой приправы, придающей продуктам и концентратам «мясной» запах и вкус, а также как источник легко усвояемого азота.

Мононатриевая соль глутаминовой кислоты – глутамат натрия – один из важнейших носителей вкусовых качеств, применяемых в пищевой промышленности.

В условиях стрессового энергетического дефицита показано дополнительное введение в организм глутаминовой кислоты, так как это нормализует азотистый обмен в организме и мобилизует все органы, ткани и организм в целом.

style=»display:block; text-align:center;»
data-ad-layout=»in-article»
data-ad-format=»fluid»
data-ad-client=»ca-pub-1238801750949198″
data-ad-slot=»7124337789″>

Еще с начала XX века на Востоке глутаминовая кислота используется как вкусовая добавка к пище и источника легко усвояемого азота. В Японии глутамат натрия – обязательная принадлежность стола.

Широкая популярность глутаминовой кислоты как пищевой добавки связана с ее способностью улучшать вкус продуктов. Глутамат натрия улучшает вкус мясной, рыбной или овощной пищи и восстанавливает ее натуральные вкусовые качества («глутаминовый эффект»).

Глутамат натрия усиливает вкус многих пищевых продуктов, а также способствует длительному сохранению вкусовых качеств консервированных продуктов. Это свойство позволяет его широко используют в консервной промышленности, особенно при консервировании овощей, рыбы, мясных продуктов.

Во многих зарубежных странах глутамат натрия добавляют практически во все продукты при консервировании, замораживании или просто при хранении. В Японии, СЩА и других странах глутамат натрия является такой же обязательной принадлежностью стола, как соль, перец, горчица и другие приправы.

Он повышает не только вкусовую ценность пищевых продуктов, но и стимулирует деятельность пищеварительных желез.

Глутамат натрия рекомендуется добавлять в продукты со слабовыраженным вкусом и ароматом: макароннеы изделия, соусы, мясные и рыбные блюда. Так, слабый мясной бульон после добавления в него 1,5-2.0 г глутамата натрия на порцию приобретает вкус крепкого бульона.

Глутамат натрия значительно улучшает также вкус отварной рыбы и рыбных бульонов.

Картофельное пюре становится ароматнее и вкуснее при добавлении в него глутамата натрия в количестве 3-4 г на 1 кг продукта.

При добавлении в офощные изделия глутамат натрия не придает им какого-либо нового вкуса, запаха или цвета, но зато резко усиливает собственный вкус и аромат продуктов, из которых приготавливают блюда, что отличает его от обычных приправ.

С фруктами, некоторыми молочными и зерновыми продуктами, а также очень жирными продуктами глутамат натрия не гармонирует.

В кислой среде действие глутамата натрия на вкус продуктов снижается, т.е. в кислые продукты или кулинарные изделия его необходимо прибавлять больше.

Некоторые заменимые аминокислоты становятся незаменимыми, если они не поступают с пищей, а клетки не справляются с их быстрым синтезом.

Использование глутаминовой кислоты как кормовой добавки особенно эффективно на фоне малобелковой диеты и у растущих организмов, когда потребность в источниках азота возрастает. Под действием глутаминовой кислоты компенсируется дефицит азота.

По эффекту обогащения пищи белковым азотом к глутаминовой кислоте близок ее амид – глутамин.

Эффективность глутаминовой кислоты зависит от ее дозировки. Применение больших количеств глутаминовой кислоты оказывает токсическое действие на организм.

Глутамитновую кислоту широко используют в медицине.

Глутаминовая кислота способствует снижению содержания аммиака в крови и тканях при различных заболеваниях. Она стимулирует окислительные процессы при гипоксических состояниях, поэтому успешно применяют при сердечнососудистой и легочной недостаточности, недостаточности мозгового кровообращения и как профилактическое средство асфиксии плода при патологических родах.

Также глутаминовую кислоту используют при болезни Боткина, печеночной коме, циррозе печени.

В клинической практике применение этой кислоты вызывает улучшение состояния больных при инсулиновой гипокгликемии, судорогах, астенических состояниях.

В детской практике глутаминовую кислоту применяют при задержке психического развития, церебральных параличах, болезни Дауна, полиолимите.

Важной особенностью глутаминовой кислоты является ее защитное действие при различных отравлениях печени и почек, усиление фармакологического действия одних и ослабление токсичности других лекарственных средств.

Антитоксическое действие глутаминовой кислоты обнаружено при отравлении метиловым спиртом, сероуглеродом, окисью углерода, гидразином, четыреххлористым углеродом, нефтегазами, хлористым марганцем, фторидом натрия.

Глутаминовая кислота оказывает влияние на состояние нервных процессов, в связи с этим она широко применяется при лечении эпилепсии, психозов, при истощении, депрессии, олигофрении, черепно-мозговых травм новорожденных, нарушениях мозгового кровообращения, туберкулезном менингите, параличах, а также при заболеваниях мышц.

Глутамат повышает работоспособность и улучшает биохимические показатели при интенсивной мышечной работе и утомлении.

Глутаминовая кислота может быть использована при патологии щитовидной железы, в частности, при эндемическом зобе.

Глутаминовая кислота используется в сочетании с глицином для больных с прогрессирующей мышечной дистрофией, миопатией.

Глутаминовая кислота используется при лечении пневмоний у детей раннего возраста.

Глутаминовая кислота противопоказана при лихорадочных состояниях, повышенной возбудимости и бурно протекающих психотических реакциях.

По материалам himija-online.ru

Комплексный анализ крови на аминокислоты (12 показателей — Аланин, Аргинин, Аспарагиновая кислота, Цитруллин, Глутаминовая кислота, Глицин, Метионин, Орнитин, Фенилаланин, Тирозин, Валин, Лейцин /Изолейцин).

  • заменимая аминокислота
  • важный источник энергии для головного мозга и центральной нервной системы
  • укрепляет иммунную систему путем выработки антител
  • активно участвует в метаболизме сахаров и органических кислот, важный источник энергии и регулятор уровня сахара в крови.
  • чувство усталости, которое не проходит после 12 часов отдыха
  • снижение памяти и способности концентрироваться
  • проблемы со сном
  • депрессия
  • мышечная боль
  • боль в суставах
  • повышенная утомляемость, нервозность и депрессии
  • гипогликемия (снижение сахара в крови)
  • мочекаменная болезнь
  • сниженный иммунитет, частые вирусные заболевания
  • снижение либидо
  • пониженный аппетит
  • условно-незаменимая аминокислота, после 30 лет синтез снижается
  • нормализует обменные процессы в организме (снижает холестерин)
  • снижает внутриглазное давление
  • участвует в выработке гормонов и ферментов
  • увеличивает мышечную массу, одновременно снижает содержание жировой ткани в организме, усиливает каркас мышц, хрящей
  • поддерживает нормальное функционирование нервной и иммунной системы
  • улучшает состав спермы у мужчин
  • увеличивает прилив крови к половым органам у мужчин и женщин, повышает потенцию и либидо, усиливает сексуальное желание
  • участвует в выработке гормона серотонина (гормона радости)
  • крапивница
  • тремор конечностей
  • раздражительность, переходящая в агрессивность
  • снижение артериального давления
  • повышение артериального давления
  • нарушение мозговой деятельности
  • нарушения гормонального обмена
  • ухудшение состояния спермы
  • снижение либидо
  • преждевременное старение
  • ожирение
  • заменимая аминокислота
  • укрепляет организм и повышает работоспособность
  • участвует в синтезе иммуноглобулинов
  • играет важнейшую роль в обмене веществ
  • ускоряет восстановление при усталости
  • помогает извлекать энергию из сложных углеводов
  • деактивация аммиака, помогает печени выводить из организма остаточные элементы химикатов и лекарств
  • участвует в производстве мочевины в организме человека (связывает аммиак и переносит его в почки для последующего выведения)
  • помогает ионам калия и магния проникать внутрь клетки
  • увеличивает производство тестостерона в организме и его высвобождение яичками
  • перевозбуждение нервной системы
  • повышенная агрессивность
  • сгущение крови
  • повышение тестостерона, пролактина, гормона роста
  • Для беременных, употребление большого количества продуктов, содержащих аспарагиновую кислоту, может негативно сказаться на нервной системе ребенка, вызвав аутизм
  • ухудшение памяти
  • депрессия
  • снижение работоспособности
  • снижение уровня тестостерона, прогестерона
  • снижение либидо
  • снижение иммунитета
  • заменимая аминокислота
  • регулятор обмена веществ
  • нормализует процессы возбуждения и торможения в центральной нервной системе
  • обладает антистрессорным эффектом
  • повышает умственную работоспособность.
  • условно-незаменимая аминокислота, является нейромедиатором передающим импульсы в центральной нервной системе
  • участвует в белковом и углеродном обмене
  • повышает устойчивость организма к гипоксии (кислородное голодание)
  • обезвреживает аммиак
  • участвует в синтезе нуклеиновых кислот
  • глутаминовая кислота способна превращаться в некоторые незаменимые аминокислоты, в частности в гистидин и аргинин
  • сохраняет естественный цвет волос, упругость и гладкость кожи
  • сгущение крови
  • головная боль
  • снижение уровня гемоглобина
  • тошнота
  • нарушения работы печени
  • болезнь Альцгеймера
  • ослабление зрения и глаукома
  • болезни печени и почек
  • нарушение работы желудочно-кишечного тракта
  • ранняя седина (до 30 лет);
  • проблемы с центральной и вегетативной нервной системой
  • увядание кожи
  • ухудшение памяти, депрессивное настроение
  • слабый иммунитет
  • эпилептические припадки
  • незаменимая аминокислота
  • участвует в формировании и восстановлении мышечной ткани
  • входит в состав эластина всех соединительных тканей организма человека
  • нормализует азотный баланса в организме
  • участвует в синтезе глиальных клеток, защищающих нервные волокна
  • улучшает адаптацию организма к холоду и теплу
  • основное вещество, необходимое организму для биосинтеза витамина В5
  • притупляет чувство голода
  • способствует синтезу серотонина (гормон радости)
  • улучшает координацию
  • ощущения мурашек по коже, онемение, покалывание в конечностях
  • проблемы с желудочно-кишечным трактом
  • раздражительность
  • аллергические реакции.
  • трещины на слизистых оболочках
  • артриты и артрозы
  • ухудшение памяти
  • ослабление иммунитета
  • депрессивное настроение
  • поверхностный сон
  • мышечная дистрофия (мышцы становятся дряблыми, любые напряжения вызывают боли)
  • сухость слизистых оболочек глаз
  • температурные изменения во внешней среде вызывают чувство озноба или жара («мне холодно», «мне жарко»)
  • незаменимая аминокислота,
  • детоксикация организма от тяжелых металлов
  • защита организма от радиации
  • защищает от атеросклероза
  • защищает печень от избытков жира
  • активирует гормоны, витамины и ферменты, обладающие свойством нейтрализации различных токсинов

Беременные женщины, кормящие матери и женщины не должны принимать метионин без консультации с врачом, т к метионин увеличивает производство эстрогена.

  • повреждение печени
  • отеки
  • ломкость волос
  • замедленное развитие плода и новорожденного
  • пороки развития нервной системы у детей
  • тяжелые психические расстройства
  • развитие атеросклероза
  • заменимая аминокислота, которая присутствует и синтезируется в организме человека
  • орнитин имеет свойство преобразовываться в аргинин
  • стимулирует секрецию гормона роста
  • стимулирует синтез инсулина
  • защищает печень от токсичного воздействия различных продуктов питания и фармакологических препаратов, восстанавливает клетоки печени
  • выводит из организма аммиак
  • улучшает работу иммунной системы
  • способствует быстрому заживлению ран
  • незаменимая аминокислота
  • в организме она может превращаться в тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина
  • влияет на настроение, уменьшает боль, улучшает память и способность к обучению
  • подавляет аппетит.
  • ослабление памяти
  • болезнь Паркинсона
  • депрессивное состояние
  • хронические боли
  • потеря мышечной массы и резкое похудение
  • обесцвечивание волос
  • предменструальный синдром
  • условно-незаменимая аминокислота, является предшественником нейромедиаторов норадреналина и дофамина
  • участвует в регуляции настроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии
  • подавляет аппетит
  • уменьшает отложения жиров
  • способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза
  • участвует в обмене фенилаланина
  • гормоны щитовидной железы образуются при присоединении к тирозину атомов йода
  • падение мышечной массы
  • проявление гипертонии
  • сниженная температура тела
  • повышенная частота пульса
  • ожирение
  • быстрая утомляемость
  • состояние депрессии
  • плохая стрессоустойчивость
  • резкие перепады настроения
  • предменструальные боли
  • снижение аппетита
  • уменьшение активности мозга
  • проявления болезни Паркинсона
  • нарушение функционирования щитовидной железы
  • гиперреактивность
  • нарушения в работе надпочечников
  • повышает энергообеспечение
  • стимулирует иммунную систему
  • в процессах обмена веществ превращается в L-аргинин
  • обезвреживает аммиак, повреждающий клетки печени
  • мышечная усталость, слабость
  • снижение иммунитета
  • снижение физической выносливости
  • снижение эрекции, либидо
  • источник энергии
  • участвует в биосинтезе гемоглобина
  • регулирует уровень сахара в крови и стимулирует гормон роста
  • участвует в утилизации холестерина
  • уменьшает время восстановления усталых мышц
  • пара «валин-изолейцин» подавляет продуцированию кортизола
  • сгущение крови
  • повышение концентрации аммиака и свободных радикалов в организме
  • апатия
  • аллергические реакции

Людям, страдающим заболеваниями почек и печени, не стоит увлекаться добавками, содержащими данную аминокислоту!

По материалам gcmi.ru

Первый подъем уровня сахара после введения углеводов отражает силу рефлекторного раздражения симпатических нервов, возникающего при попадании глюкозы в пищеварительный канал. Дальнейшее увеличение концентрации сахара, как правило, связано с быстротой всасывания углеводов, определяемой состоянием кишечной стенки, функцией печени. У здорового человека величина содержания сахара в крови через час после нагрузки на 50—75% превышает уровень сахара в крови натощак. Нисходящая часть гликемической кривой отражает продукцию инсулина и зависит от состояния парасимпатической нервной системы обследуемого, функции поджелудочной железы, печени и других органов. Этот отрезок гликемической кривой носит название гипогликемической фазы. Последняя точка на гликемической кривой, определяемая через 2,5-3 ч, обусловлена состоянием равновесия всех систем организма, участвующих в регуляции содержания сахара в крови В норме она должна совпадать с уровнем сахара в крови у обследуемого натощак. У больных сахарным диабетом содержание глюкозы в крови натощак бывает повышенным, нарастание гликемической кривой происходит медленнее, достигая через 60-150 мин значительной величины (более чем в 1,8 раза превышает [c.159]

После инъекции инсулина развивается гипогли-кемическое состояние, которое, однако, быстро ликвидируется при введении глутаминовой кислоты. Объясните, почему глутаминовая кислота нормализует уровень глюкозы в крови. Ответ поясните схемой. [c.412]

Тест на толерантность к глюкозе. Скорость секреции инсулина регулируется уровнем сахара в крови. После принятия пищи, богатой сахаром, уровень сахара в крови временно повышается. Это стимулирует секрецию инсулина поджелудочно11 железой, что в свою очередь приводит к снижению уровня сахара крови. Эта закономерность лежит в основе диагностического теста на диабет. При возникновении подозрения на возможность сахарного диабета (в результате определения глюкозы в моче с помощью реакции Бенедикта) у больного исследуют гликемиче-скую кривую (тест на толерантность к глюкозе). Ему дают массивную дозу глюкозы — 1 г на 1 кг веса тела — и через определенные интервалы в течение нескольких часов определяют уровень сахара крови. Вначале, независимо от того, болен ли человек диабетом или нет, уровень сахара крови быстро повышается, В нормальном организме в результате этого увеличивается секреция инсулина, и примерно через час содержание сахара в крови возвращается к исходному уровню. При введении больших доз глюкозы оно может понизиться даже до гипогликемического уровня, так как в этом случае может наступить слишком сильная стимуляция поджелудочной железы. При сахарном же диабете уровень сахара в крови поднимется и останется повышенным в течение нескольких часов. Типичные гликемические кривые для обоих случаев показаны на фиг. 107. [c.385]

Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]

Случай 1. Больной не переносит молока. Как только он его выпьет, у него сразу же начинаются рвота и понос. Проведен тест на толерантность к лактозе. (Испытуемый получает при этом определенное количество лактозы, после чего у него через соответствующие промежутки времени измеряют концентрацию глюкозы и галактозы в плазме крови, В норме уровень этих сахаров возрастает до максимума примерно через час, а затем снижается,) У больного в этом тесте концентрация глюкозы и галактозы в крови не возрастала, а оставалась постоянной, Объясните, почему у здоровых людей концентрация глюкозы и галактозы в крови сначала растет, а затем снижается. Почему у больного таких изменений не происходит Случай 2. У больного с умственной отсталостью молоко вызывает рвоту и понос, В крови концентрация глюкозы низка, а концентрация редуцирующих сахаров значительно выше нормы, В моче обнаруживается галактоза. Чем объясняется высокая концентрация редуцирующих сахаров в крови Почему в моче обнаруживается галактоза [c.475]

Концентрация глюкозы в норме натощак составляет 80 мг/100 мл (4,4 мМ). В течение дня концентрация глюкозы в крови в норме колеблется от 80 мг/100 мл перед едой до примерно 120 мг/100 мл после еды. Как же поддерживается относительно постоянный уровень содержания глюкозы, несмотря на значительные изменения в ее поступлении и использовании Выше мы уже обсуждали основные регуляторные элементы, так что теперь мы рассмотрим их во взаимодействии. Содержание глюкозы в крови регулируется прежде всего печенью, которая может поглощать и вьщелять в кровь большое количество глюкозы в ответ на гормональные сигналы и на само изменение концентрации глюкозы (рис. 23.18). Повышение концентрации глюкозы в крови, происходящее после приема богатой углеводами пищи, в свою очередь вызывает повышение содержания глюкозо-6-фосфата в печени, так как только в этих условиях каталитические участки глюкокиназы заполняются глюкозой. Напомним, что глюкокиназа в отличие от гексокиназы имеет высокую Км для глюкозы ( 10 мМ, тогда как концентрация глюкозы в крови натощак составляет 4,4 мМ) и не ингибируется глюкозо-6-фосфатом. В результате при повышении содержания глюкозы в крови скорость образования глюкозо-б-фосфата в печени увеличивается. Дальнейшая судьба глюкозо-6-фосфата регулируется в основном противоположно направленным действием глюкагона и инсулина. Глюкагон запускает каскадный механизм регуляции, [c.292]

Пищевая глюкозурия. Это недолговременный тип глюко-зурии, являющейся результатом приема внутрь большого количества сахара. Сахар всасывается так быстро, что организм не успевает превращать его достаточно быстро в гликоген и таким образом поддерживать содержание сахара в крови ниже почечного порога . После экскреции избытка сахара уровень содержания глюкозы становится нормальным. [c.365]

Глюкоза накапливается в животном организме в виде гликогена, который легко превращается энзимами обратно в глюкозу в печени и мышцах. Гликоген в мышцах быстро расходуется во время работы и восстанавливается при отдыхе его концентрация может колебаться в пределах от 0,1 до 1%. Количество гликогена в печени также может сильно варьировать, в зависимости от состояния питания. У истощенных животных его количество может составлять меньше 1%, а у животных с хорошим питанием достигает 15% от веса свежей печени. Если мышцы нуждаются в большем количестве гликогена, они получают из крови глюкозу и превращают ее с помощью ферментов в гликоген. Одновременно печень пополняет кровь таким количеством глюкозы, которое было взято мышцами таким образом, общее количество глюкозы в крови остается неизменным. Минимальная концентрация, называемая голодным уровнем , составляет у здорового человека в среднем около 0,1% впрочем, у взрослых концентрация глюкозы может колебаться в пределах 0,08—0,14% и у малых детей падать до уровня 0,06%. Количество глюкозы у нормального человека может увеличиться максимально до 0,18% после употребления углеводов в пищу. Термин гипогликемия применяют в том случае, когда содержание сахара в крови ниже нормального голодного уровня. Термином гипергликемия обозначают состояние, когда уровень сахара в крови выше нормального, после приема в пищу большого количества углеводов. Гипергликемия появляется обычно при диабете р [c.189]

Уровень глюкозы в крови после 40-часового голодания подаерживается за счет [c.385]

Моносахариды пищи представлены в основном глюкозой и фруктозой, которые содержатся во многих фруктах, меде и называются сахарами. В организм они поступают в свободном виде либо образуются в процессе пищеварения из ди- и полисахаридов пищи. Поступление в организм большого количества свободной глюкозы и быстрое ее всасывание в кровь (уже через 15—20 мин после приема пищи она обнаруживается в крови) приводит к гипергликемии крови, что активирует функцию поджелудочной железы, которая выделяет гормон инсулин, обеспечивающий поступление глюкозы в ткани, где она используется для синтеза гликогена, а при значительном избытке — и для синтеза жиров. После действия инсулина уровень глюкозы в крови снижается, что может привести к гипогликемии и общей слабости. Систематическая активация поджелудочной железы может способствовать развитию заболевания сахарным диабетом. Поэтому количество моносахаридов в питании людей, особенно в пожилом возрасте, должно быть ограничено и не превышать 25—35 % общего количества потребляемых углеводов. [c.448]

Концентрация глюкозы в крови взрослого человека в норме поддерживается в пределах 4,4—6,0 ммоль л или 80—120 мг% (в 100 мл крови) несмотря на значительные изменения ее потребления и поступления в течение дня (рис. 61). Постоянный уровень глюкозы в крови регулируется прежде всего печенью, которая может поглощать или выделять глюкозу в кровь в зависимости от ее концентрации в крови и в ответ на воздействие гормонов. Повышение глюкозы в крови после приема углеводной пищи активирует ферментативный процесс синтеза гликогена в печени, а понижение ее уровня усиливает распад гликогена в печени до глюкозы с последующим выделением ее в кровь. [c.166]

У человека в период между приемами пищи концентрация глюкозы в крови варьирует от 80 до 100 мг/100 мл. После приема пищи, богатой углеводами, концентрация глюкозы увеличивается до 120—130 мг/100 мл. Во время голодания концентрация глюкозы падает приблизительно до 60—70 мг/100 мл. При нормальном состоянии организма уровень глюкозы в крови колеблется в указанных пределах. У жвачных концентрация глюкозы значительно ниже— около 40 мг/100 мл у овец и 60 мг/100 мл у крупного рогатого скота. Это, по-видимому, связано с тем, что у данных животных практически все углеводы, поступающие с пищей, расщепляются до низших (летучих) жирных кислот, которые заменяют глюкозу в качестве источника энергии в тканях при нормальном питании. [c.222]

Наиболее информативным показателем состояния углеводного обмена является уровень глюкозы в крови. В постабсорбтивный период (после завершения периода пищеварения), обычно утром после сна, в норме концентрация глюкозы равна 3,3—5,5 ммоль/л. [c.283]

Существует еще один аспект, о котором следует помнить, рассматривая глюконеогенез с точки зрения биологии человека и медицины. Потребление больщих количеств алкоголя резко тормозит глюконеогенез в печени, вследствие чего понижается содержание глюкозы в крови. Такое состояние называется гипогликемией. Это действие алкоголя сказывается особенно резко после тяжелой физической нагрузки или на голодный желудок. Если человек выпьет спиртного после длительной и тяжелой физической работы, уровень глюкозы в крови может понизиться до 40 и даже до 30% от нормы. Гипогликемия неблагоприятно сказывается на функции мозга. Она особенно опасна для тех его областей, которые контролируют температуру тела, так что, например, под влиянием гипогликемии температура тела может понизиться на 2°С и более (при измерении в прямой кишке). Если человеку в таком состоянии дать выпить раствор глюкозы, то нормальная температура тела быстро восстановится. Старый обычай, предписывавший давать спасенным на море или в пустыне голодным или обессилевшим людям виски или бренди, физиологически неоправдан и даже опасен в таких случаях следует давать глюкозу. [c.611]

Когда поджелудочная железа выделяет недостаточное количество инсулина, организм оказывается неспособным окислять глюкозу или превращать ее с нормальной скоростью в гликоген. В результате этого глюкоза накапливается в крови. Повышение уровня сахара в крови зависит от потребления углеводов и от степени повреждения поджелудочной железы. В серьезных случаях диабета прием внутрь 1 г глюкозы на 1 кг веса может в течение 1 часа привести к повышению уровня сахара до 0,4—0,5%. В отличие от нормальных людей, уровень сахара у диабетиков может оставаться высоким в течение нескольких часов и превышать 0,2% после голодания в течение ночи. [c.190]

Глюкоза. В порциях мочи, полученных до выполнения физической нагрузки, глюкоза практически отсутствует. После завершения тренировки в моче спортсменов общепринятыми методиками нередко обнаруживается значительное содержание глюкозы (глюкозурия), что может быть обусловлено двумя основными причинами. Во-первых, как уже отмечалось, при выполнении физических упражнений в крови повышается уровень глюкозы (гипергликемия) и он может превысить почечный порог, вследствие чего часть глюкозы не будет подвергаться обратному всасыванию в извитых канальцах нефрона и останется в составе мочи. Во-вторых, из-за повреждения почечных мембран нарушается непосредственно процесс обратного всасывания глюкозы в почках, что также ведет к развитию глюкозурии. [c.163]

Врач. Ну так вот. Вы решили заняться собой и однажды утром сделали зарядку. Что произошло с вашим организмом На какое-то время скорость кровотока повысилась, и если сразу после зарядки вы измерите содержание глюкозы в крови, то оно, наверняка, немного понизится. Что же касается жизненной емкости легких и массы вашего тела, то после одного занятия, как вы прекрасно понимаете, они практически не изменятся. Совсем другое дело, если вы зарядку станете делать ежедневно да еще ежедневно будете совершать прогулки на свежем воздухе. Словом, существенно измениге свой образ жизни. Тогда через несколько месяцев у вас заметно возрастут потребление кислорода тканями тела, интенсивность метаболизма, число митохондрий в клетках, а значит, и ваш Параметр Подобия повысится. Вот теперь, в полном соответствии с (4.32), у вас уменьшится содержание жира в теле, увеличится жизненная емкость легких, снизится содержание в крови глюкозы и холестерина, а также понизится уровень очень опасных для организма аутоиммунных процессов (см. рис. 4.7). [c.96]

Важнейший углевод крови — глюкоза. Содержание ее невелико, в среднем составляет около 100 мг на 100 мл. У крупного рогатого скота глюкозы еще меньше — 40— 70 мг. После приема корма уровень моносахарида в крови временно повышается. Другие углеводы могут находиться в крови в очень малых количествах в связанном с белком виде. [c.162]

Гомеостатический уровень глюкозы в крови ОЬ), максимальное отклонение от него (Ятах) и общая нагрузка на организм после гфиема глюкозы (У) увеличились соответственно на 8, 25 и 46%. Такие изменения углеводного обмена привели к заметному увеличению числа заболевших сахарным диабетом. [c.150]

Контроль синтеза и распада гликогена в печени занимает центральное место в регуляции содержания глюкозы в крови. В норме этот уровень колеблется оттот 80 до 120 мг на 100 мл. Печень чувствительна к концентрации глюкозы в крови если содержание глюкозы в крови превышает пороговый уровень, печень поглощает глюкозу если же ее содержание ниже этого уровня, печень высвобождает глюкозу. Количество фосфорилазы а в печени быстро уменьшается при вливании глюкозы (рис. 16.10). После лаг-периода возрастает количество гликоген-синтазы а, что приводит к синтезу гликогена. Недавно было установлено, что в клетках печени фосфорилаза служит глюкозным датчиком-чувствительным элементом для глюкозы. Связывание глюкозы с фосфорилазой а сдвигает аллостерическое равновесие из R-состояния в Т-состояние (см. рис. 16.5). В результате фосфорильная группа при се-рине-14 становится доступной для гидролиза фосфатазой. Значительную роль играет при этом то обстоятельство, что фосфатаза, тесно связываясь с фосфорилазой а, проявляет свое каталитическое действие только после перехода последней в Т-состояние под действием глюкозы. [c.128]

В жировой ткани уменьшается утилизация глюкозы и снижается ингибирующее действие инсулина на липолиз, жир мобилизуется в виде свободных жирных кислот и глицерола. Свободные жирные кислоты переносятся в другие ткани, где они либо окисляются, либо эстерифицируются. Глицерол после активации (превращения в глицерол-З-фосфат) поступает в углеводный пул (в основном в печени и почках). Во время перехода от сытого состояния к голоданию эндогенное образование глюкозы (из аминокислот и глицерола) отстает от ее использования и окисления, запасы гликогена в печени истощаются и концентрация глюкозы в крови падает. Мобилизация жира возрастает в течение нескольких часов, затем содержание свободных жирных кислот в плазме и глюкозы в крови стабилизируется на уровне, характерном для состояния голодания (0,7 —0,8 мкмоль мл и 60—70 мг/100 мл соответственно). Можно полагать, что при этом уровне глюкозы в крови животного ее поступление в ткани обеспечивает потребности утилизации и окисления. Компенсаторное увеличение окисления жирных кислот и ке тоновых тел позволяет снизить уровень окисления [c.297]

У людей богатая волокнами диета оказывает благоприятный эффект, способствуя задержке воды при прохождении пищи по кишечнику и формированию благодаря этому объемных мягких фекалий. Такая диета снижает вероятность возникновения дивер-тикулоза, рака толстой кишки, сердечно-сосудистых заболеваний и сахарного диабета. Волокна с небольшой растворимостью, такие, как целлюлоза и лигнин, содержащиеся в пшеничных отрубях, хорошо действуют на функцию толстой кишки, тогда как более растворимые волокна, присутствующие в овощах и фруктах, например смолы и пектины, снижают уровень холестерола в крови, возможно, благодаря связыванию желчных кислот и холестерола пищи. Растворимые волокна также препятствуют опорожнению желудка, замедляют и снижают подъем уровня глюкозы в крови после приема пищи с последующим уменьшением секреции инсулина. Этот эффект особенно благоприятен для больных диабетом и лиц, находящихся на диете, поскольку в таких условиях степень последующего падения уровня глюкозы в крови (феномен отдачи), которое стимулирует аппетит, уменьшается. [c.278]

В конце XIX столетия было обнаружено, что у собак после хирургического удаления поджелудочной железы развивается состояние, близкое к сахарному диабету у человека (гл. 24). У этих животных, как и у людей больных диабетом, уровень глюкозы в крови повышен, т.е. имеет место гипергликемия. Глюкоза при этом выделяется с мочой в большом количестве, придавая ей сладкий вкус, т.е. имеет место глюкозурия. (В свое время сахарный и несахарный диабет различали по вкусу мочи, так как другой признак, а именно выделение больших объемов мочи свойствен обоим состояниям.) Попытки лечить собак с удаленной поджелудочной железой путем скармливания им необработанной ткани поджелудочной железы, полученной от здоровых животных, не привели к успеху, однако инъекция экстрактов нормальной поджелудочной железы прооперированным собакам ослабляла проявление у них симптомов диабета. После многих безуспешных попыток в 1922 г. все же удалось выделить в чистом виде активный фактор, присутствующий в экстракте поджелудочной железы. Он был назван инсулином (т. е. островковым веществом ), поскольку к тому времени уже было известно, что именно островковая теань служит источником гормона. Вскоре инсулин стал применяться для лечения лю- [c.796]

Больной инсулинзависимым сахарным диабетом длительное время не получал инъекций инсулина. После обращения к врачу и тщательного обследования назначена терапия инсулином. Через 2 мес концентрация глюкозы в крови натощак 85 мг/дл, уровень гликозилированного гемоглобина 14% от общего уровня гемоглобина (норма 5,8—7,2%). [c.428]

После приема пищи, богатой углеводами, избыток сахара откладывается в печени в виде гликогена. Однако способность печени откладывать гликоген ограниченна. Если уровень сахара в крови повышается до 150—180 лгг/%, то почки не справляются с обратным всасыванием глюкозы в кровь и наступает алиментарная (пищевая) гипергликемия, которая может сопровождаться глюкозурией, т. е выделением глюкозы с мочой. Гипергликемия и глюкозурия, вызванные обильным поступлением еахара с пищей, кратковременны и через несколько часов после приема пищи исчезают. [c.317]

Концентрация глюкозы в артериальной крови в течение суток поддерживается на постоянном уровне 80—100 мг/дл (3,3—5,5 ммоль/л). После приема углеводной пищи уровень глюкозы в крови возрастает в течение 0,5—1 ч до 120—140 мг/дл (=8 ммоль/л алиментарная гипергликоземия), затем (приблизительно через 2 ч) возвращается к нормальному уровню (см. рис. 6.2). [c.384]

Первая помощь. Заключается в удаление вещества из организма, задержке его окисления и борьбе с ащвдозом. При острых отравлениях через рот — обязательно обильное промывание желудка 2% раствором гидрокарбоната натрия, теплой водой (8-12 л) даже через 1-2 сут после приема внутрь. Внутрь 2-А л и внутривенно 1 л 5% питьевой соды. Под кожу 500 мл 5% глюкозы. Для последующей борьбы с ацидозом — каждые 30 мин по 5 г питьевой соды, обильное питье. Основное противоядие — этанол (препятствует окислению метанола). Применение его обязательно, если уровень метанола в крови более 20 мг % вводится в/в 1 л 5% этанола на 40% глюкозе или изотоническом растворе хлорида натрия. Кроме того каждый час пить 40-60 мл 10-20% этанола в дальнейшем повторять в/в введение этанола. При покраснении лица — высокое положение головы, холод к голове. При поражении зрения хороший эффект получен при повторных инъекциях хлорида кальция каждые 6 ч в первые сутки и при применении витамина В1 [c.583]

Для решения вопроса об участии глюкозамина в обмене аммиака и глюкозы мы исследовали 1) синтез глюкозамина срезами мозга в условиях гипероксии 2) уровень легкогидролизуемого глюкозамина в коре головного мозга кроликов в норме и после действия на животных высокого давления кислорода 3) содержание глюкозамина в сыворотке крови в тех же условиях опыта и 4) активность ферментов мозга, синтезирующих глюкозамином. [c.143]

Смотреть страницы где упоминается термин Глюкоза уровень в крови после еды: [c.360] [c.143] [c.351] [c.209] [c.143] [c.344] [c.180] Биосенсоры основы и приложения (1991) — [ c.319 ]

По материалам chem21.info

Признаками избытка глутамата в головном мозгу являются следующие состояния:

  • Гиперактивность – невозможность сосредоточиться на какой-то деятельности, контролировать свое поведение. Внимание скачет с предмета на предмет, при этом ни одно дело не доведено до конца
  • бессонница,
  • тревожность
  • головная боль
  • скачки артериального давления
  • возникновении стереотипий, которые наблюдаются у детей с аутизмом.

Человек навязчиво повторяет одни и те же слова, раскачивается из стороны в стороны, размахивает руками, не может усидеть на одном месте, бессмысленно ходит из стороны в сторону, кружится на одном месте.

  • Мышление становится вязким, в голове навязчиво крутятся мысли, слова, мелодии песен, которые мешают сосредоточиться на чем-то действительно важном.
  • Внутренние диалоги, которые человек не может прекратить волевым усилием
  • Рассогласованность нейромедиаторного баланса приводит к такому симптому шизофрении, как «голоса» в голове. «Голоса» отдают приказы, комментируют действия, могут ругать, запугивать и т.д. В настоящее время предполагают, что эти «голоса» — поток мыслей самого человека. В норме этот мыслепоток, возникающий в слуховой зоне, блокируется корой лобной доли и в сознание пропускаются лишь действительно важные мысли. Но при сбоях либо ослабевает тормозящее действие лобной зоны либо импульсы, возникающие в слуховой зоне, слишком сильны, и возникает «пробой» из подсознания в сознание, в результате человек слышит «голоса».

Признаки избытка глутамата могут быть как симптомами серьезных заболеваний (шизофрения, аутизм), так и временным дисбалансом, возникшем в результате стресса или кислородного голодания мозга, причины которого могут быть самыми разными, в том числе остеохондроз шейного отдела позвоночника.

Избыток глутаминовой кислоты в организме может вызвать:

  • увеличение в крови эозинофилов – клеток крови, способствующих возникновению аллергических реакций. Избыток эозинофилов поражает выстилку кровеносных сосудов (интиму), что запускает процесс атеросклероза: язвы в интиме, которые проели эозинофилы, залатываются сгустками фибрина, на которые откладывается холестерин. Так образуется холестериновая бляшка, мешающая кровотоку. Со временем кровоснабжение головного мозга ухудшается, и все негативные симптомы усугубляются.
  • увеличение выработки в головном мозгу естественных опиоидов (эндорфинов и энкефалинов), как реакция на повреждения, связанные с избытком глутамата. С одной стороны они защищают нашу психику, блокируя слабые болевые импульсы, которые всегда генерируют поврежденные клетки (а избыток глутамата повреждает нервные клетки). С другой стороны истощение собственных запасов опиоидов ведет к пониженному настроению, депрессии, стремлении покончить с собой, а также неосознанным поискам внешних источников опиоидов, для повышения эмоционального фона, а это путь к алкогольной и наркотической зависимости.
  • Снижение выработки глутатиона. Глутатион – естественный антиоксидант, защищающий клетки от повреждающего действия свободных радикалов. При избытке глутамата оксидантный стресс – непосредственная причина гибели нервных клеток. Уменьшение концентрации глутатиона способствует усугублению печального сценария.
  • Увеличение выработки ацетилхолина – еще одного возбуждающего нейромедиатора, что усиливает гиперактивность, импульсивность и другие патологические реакции.
  • Способствуют усилению повреждающего действия ртути, которая попадает в организм с автомобильными выхлопами, а до недавнего времени органические соли ртути использовались как консерванты производителями вакцин и сывороток. Ртуть – яд, убивающий нервные клетки.
  • Увеличение скорости размножения стрептококков – бактерий, вызывающих как воспалительные заболевания (ангина, скарлатина, рожа), так и аутоиммунные поражения почек, суставов, клапанов сердца. Люди с дисбалансом, у которых высокий уровень глутаминовой кислоты в организме, в том числе дети с аутизмом, склонны к стрептококковым инфекциям
  • Есть вероятность того, что высокие уровни глутамата способствуют усиленному размножению раковых клеток.

В обычных условиях глутаминовая кислота, которая является возбуждающим нейромедиатором, с помощью фермента глутаматдекарбоксилазы превращается в γ-аминомасляную кислоту (ГАМК) – тормозящий нейромедиатор, чем достигается нормальная работа головного мозга.

Однако в результате сбоев ферментативных систем, может возникнуть дисбаланс, когда возникает избыток глутамата в головном мозгу. Глутаминовая кислота – необходимый источник для синтеза ГАМК. Избыток глутамата может возникнуть из-за недостатка фермента глутаматдекарбоксилазы, который превращает глутамат в ГАМК

Ферментативная недостаточность может быть вызвана рядом причин:

  • Попадание в организм вируса краснухи, как при заболевании краснушной инфекцией, так и при вакцинации против этого заболевания. Вирус краснухи вдвое снижает активность глутаматдекарбоксилазы с чем может быть связано проявление аутизма у детей после вакцинации от этой инфекции.
  • Заболевания поджелудочной железы, которая производит фермент глутаматдекарбоксилазу. При диабете 1 типа в организме вырабатываются антитела к фертменту, которые разрушают его, что приводит к его недостатку.
  • Недостаток витамина В6 (пиридоксина) при непосредственном участии которого работает глутаматдекарбоксилаза.
  • Накопление в организме свинца – ядовитого тяжелого металла, загрязняющего окружающую среду с промышленными отходами, особенно много свинца содержится в продуктах сгорания бензина.
  • Нормальный баланс между глутаминовой кислотой и ГАМК зависит от нормального функционирования цикла Кребса (цикл трикарбоновых кислот), обеспечивающий энергией нервные клетки.

Сбои в работе цикла Кребса могут возникнуть в результате нехватки витаминов группы В, действия ядовитых веществ и тяжелых металлов, которые проникают в организм из загрязненной промышленными отходами внешней среды. Грибы рода Кандида также вырабатывают вещества, негативно влияющие на его работу.

  1. Уровень глутаминовой кислоты тесно связан с уровнем инсулина, вырабатываемым поджелудочной железой. Когда глутамата много, поджелудочная железа выбрасывает в кровь инсулин, который понижает уровень глюкозы (сахара) в крови. Но когда глюкозы в крови становится критически мало, организм получает сигнал к усиленному образованию глутаминовой кислоты. Постоянная гипогликемия (пониженный сахар крови) это сигнал организму вырабатывать глутаминовую кислоту, которая пойдет не только в энергетическую топку, но и будет постоянно подхлестывать нервные клетки, поддерживая состояние повышенного возбуждения.
  2. Хронический стресс запускает процессы, при которых глутамат буквально «заливает» мозг, перевозбуждая глутаматные рецепторы.
  3. Аминокислота таурин стимулирует выработку глутаматдегидрогеназы, перегоняющей глутамат в тормозящий ГАМК, что снимает повышенную возбудимость. Таурин сам является тормозным нейромедиатором, он соединяется с теми же рецепторами, что и ГАМК, замещая его при недостаче. Таурин содержится в морепродуктах и красном мясе. Эти продукты позволяют в какой-то степени восстановить баланс тормозных и возбуждающих нейромедиаторов.
  4. Дисбаланс микроэлементов, в первую очередь Кальция, Магния и Цинка оказывает влияние на работу глутаматных рецепторов и прохождение сигналов по нервным клеткам. Магний активирует работу ГАМК-рецепторов, поэтому оказывает успокаивающее действие. Дефицит Кальция также нарушает работу нейромедиаторов, что проявляется в повышенной возбудимости, нервозности, бессоннице, у детей дефицит кальция проявляется в ночном испуге, вздрагивании, беспричинном плаче. Цинк является дополнительным активатором MNDA-рецепторов. Его избыток (свыше 40 мг\сутки) повышает негативные проявления избытка глутамата. Тройка основных микроэлементов поступает в организм с пищей, но часто их потребление недостаточно, что ведет к рассогласованию работы тормозных и возбуждающих нейромедиаторов.
  5. Недостаток витамина К ведет к нарушению обмена Кальция. Витамин К направляет Кальций из крови в костную ткань, не позволяя увеличиваться его концентрации свыше нормы, что также вредно, как и недостаток кальция в крови. Витамин К относится к жирорастворимым, и ограничение жиров может привести к невозможности всасывания витамина К из пищи.
  6. Недостаток выработки нейромедиатора серотонина ведет к нарушению работы ГАМК, которая не может выполнять свою функцию по уравновешиванию возбуждающего действия глутамата. Серотонин вырабатывается из аминокислоты триптофана, одной из самых дефицитных в рационе, ибо она практически отсутствует в растительных белках.
  7. Инфекция грибками рода Кандида. Грибки вырабатывают токсин (яд), который способствует выведению таурина из организма, что приводит к его дефициту в головном мозгу, и, соответственно, к повышению возбудимости. В некоторых случаях выводится не только сам таурин, но и его соединения с магнием, что приводит к дисбалансу микроэлементов.
  8. Диета, в которой не хватает полезных жиров и полноценных белков, но в избытке содержатся простые углеводы (сахар, картофель, белый хлеб, белый рис), шоколад, кофеин, искусственные подсластители, ароматизаторы и красители нарушают баланс ГАМК и глутамата, ведут к перевозбуждению нервных клеток.

Пищевые продукты и пищевые добавки могут приводить к усилению производства глутамата со всеми негативными последствиями его высокой концентрации в головном мозгу. Особенно это важно для детей, больных аутизмом, а также для гиперактивных детей с дефицитом внимания.

По материалам zaryad-zhizni.ru